Agile Modeling and Development

I prefer an agile approach to software modeling and development. Agile development is more about attitude than formal process, yet, when combined with a structured methodology provides a scientific approach (structured, repeatable, and predictive) that also maintains the dignity and creativity of the individual developer. Moreover, it lends itself to refinement meaning, over time, the process becomes more efficient and reliable.

The traditional methodology requires that each phase be completed before continuing to the next in a sequential fashion.

[image: image1.png]ggggggggg

The Traditional approach is linear.

In practice, the traditional methodology often falls short of schedule deadlines because it does not embrace changing requirements. Once an application reaches the testing stage, it is very difficult to implement changes in the existing architecture.

Alternatively, an agile methodology embraces change. Each application feature is independently analyzed, designed and implemented in a cyclic manner. Testing is an integral part of the implementation. At the end of each cycle or interval, a baseline is established and the process is restarted. Since each baseline contains completed features, it is also a demonstrable unit of progress.

[image: image2.png]

The Agile approach is cyclic.

The cyclic nature of the Agile Methodology produces a shorter development schedule that supports the fast paced nature and rapidly shifting requirements of software development.

The principles that guide the agile methodology are:

1. Priority. The highest priority is to satisfy the customer through early and continuous delivery of valuable software.

2. Frequent Delivery. Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.

3. Changing requirements. The team welcomes changing requirements, even late in development. Agile processes harness change for the customer's competitive advantage.

4. Synergy. Business people, users, domain experts, and technical groups work together, throughout the project, in a mutually advantageous manner.

5. Team effort. We work as a team of motivated individuals but also recognize the individual. We give them the environment and support they need, and trust them to get the job done.

6. Communication. The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.

7. Progress. Working software is the primary measure of progress but we also measure our progress and circumvent schedules slips before they occur.

8. Productivity. Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely.

9. Quality. Continuous attention to technical excellence and good design enhances agility. We don’t “reinvent the wheel” unless necessary and rely on established software patterns and templates.

10. Simplicity. We favor simple solutions over complex ones.

11. Self-organized. The best architectures, requirements, and designs emerge from self-organizing teams.

12. Introspection. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

In order to develop in an Agile fashion, the following flow is proposed:

[image: image3.emf]Development

Model Office Production ITE

Development
(Unit test tier)

Model Office 1 (Testing tier)

ITE

(Integration tier)

Production3

Developers code the functionality and run individual unit tests on their workstations. When satisfied with the results the code is checked into the Model Office Project in SourceSafe and transitions into the Model Office State.

The Model Office tests the entire application using an automated script. Results are reviewed to insure correctness.2 Once all tests pass the code transitions into the ITE state.

User acceptance testing. Mirrors the production environment where appropriate.

Golden Code !!

1. For lack of a better terms, Model Office is the development integration point used to test the entire application

2. The output of the tests could be posted to an internal web page, emailed to all developers, etc.
3. Prior to moving to production, the unit tests will be removed from the final assembly.
The state transitions are:

[image: image4.emf]Development

Model Office

ITE

Production

[Unit tests passed]

[integration tests pass]

[User tests and accepts]

[Change Request]

Broadly, once the requirements are complete and the effort scoped, the use cases are portioned into units of work that can be completed in 2-3 week intervals. Each iteration is an encapsultated mini-project composed of analysis, design, programming, and testing. At the end of each interval, a baseline is established. Since each baseline contains completed features, it is also demonstrable unit of progress. Over time, the user will see progress and remain excited about the project.

Key motivations for iterative development are:

· Manageable complexity
· Accommodates change
· Early risk reduction and discovery
· Tracking progress

· Quick response to changing requirements

· Greater confidence and satisfaction from early, repeated success
· Early partial product
· Predictability
· Higher quality; less defects
· Final product matches user desires
· Continuous process improvements
· Allows functionality to rapidly evolve based on stakeholder input & changing needs
Generally, my goal-based strategy using an agile approach is as follows:

Identify and establish a unifying relationship with all stakeholders.

Goal: Identify all users and interested parties

A stakeholder is someone or some "thing" with a vested interest in the behavior of the system. Not all of the stakeholders are present while the system is executing but the system must protect and satisfy the stakeholders’ interests at all times.

Our stakeholders must feel confident that we are working in their best interests.

Understand the stakeholder interests.

Goal: See the application from the perspective of the stakeholders

Once identified, we must understand our stakeholders’ goals and business processes from their perspective – not ours. We must beware of our (unconscious) tendency to interpret business processes strictly from a technical context. We exploit technology on behalf the user, not the user on behalf of technology. We must not force or cajole our users into our way of thinking at the expense of their own.

Produce a Vision document

Goal: Communicate and propose a unified vision for the project

To achieve a truly collaborative and cooperative working environment, it is essential that everyone involved in the project share the same vision. The vision document provides a shared understanding amongst developers and stakeholders and provides an overview of the system to be developed. It is our first analysis artifact that proposes our solution and generates excitement for the project.

Determine Requirements.

Goal: Understand an application’s business operations, inputs, and outputs

Working closely with our stakeholders, we will prioritize the requirements to determine our order of work. Our favored approach, and one that produces results quickly, is an iterative process where requirements are identified and produced in prioritized groups. In this manner, the most important requirements are designed and developed first. At the end of the project, we will have a complete application described by a complete requirements document.

Model Requirements

Goal: Identify the way stakeholders use the application.
Modeling begins by producing use cases from the requirements. Of all the artifacts produced from a software design, use cases may be the most important since they capture the business process and, collectively, describe the software application’s functionality from the user’s perspective. The use cases are portioned into units of related functionality that provide a systems overview of the application.

Design

Goal: Propose a logical solution for the functionality identified in the requirements Model.

Software design proceeds from the use cases and identifies the collaborative and cooperative objects to be implemented. Using the principles of Object Oriented Design (OOD) will encourage the use of abstraction, encapsulation, polymorphism and reusability in the application structure. Design artifacts will be produced that depict the structure, interactions, and components of the application. At the end of the project, we will have a formal, technical description of the application.

Implementation

Goal: Implement the solution specified in the Design Model.

The implementation proceeds iteratively in units of work that can be completed in a predefined interval – usually 2-4 weeks. Each iteration is an encapsulated mini-project composed of requirements identification, analysis, design, implementation, and testing.

[image: image5.png]N NN

jRS—

Aralyss

Desien

Inplementation

Testing

One Tteration

At the end of each interval, a baseline is established and the process is restarted. Since each baseline contains completed features, it is also demonstrable unit of progress. Over time, the user will see progress and remain excited about the project. Key motivations for iterative development are:

Testing

Goal: Produce a verifiable solution for the problem domain

Testing will be a consideration throughout the life cycle of the project. Each developer is responsible for unit testing their code on their workstations. When satisfied their test cases pass, they will check their code into the source code repository that will contain the cumulative changes and test cases. Therefore, at any given time, the source code repository will contain a working set of functionality that can be executed, demonstrated and verifiably proven.

Quality is maintained by executing an automated build/test script that executes at night. The script will retrieve the source code from the repository, compile it, execute all the unit test cases, run the functional test suites and produce a report showing success or failure. All failures will be identified in the report and resolved the next day. Since the script runs nightly, failures are limited to the changes that occurred in the current day’s changes. Once fixed, code integrity will be restored and the tests will complete successfully.

At the appropriate time, the application will be moved to ITE and later, when approved, to production.

Maintenance and Support

Goal: Manage ongoing support, fixes and enhancements

Changes/fixes/enhancements will be implemented and tested using the same agile methodology. The requirement must be understood, analyzed for their impact on the system and required level of effort, modeled, designed, implemented and tested. Changes will be propagated to the design model when necessary.

Conclusion

While not a panacea for all software development issues, I believe an agile methodology is an effective approach to producing quality software in a timely manner without sacrificing documentation and practical software engineering techniques. It is not a good methodology for a “hobby shop” since agile development encourages communication, documentation, accountability and verifiably proven results. Agile development is a methodology founded on integrity and professionalism. It reflects the principles and values of the development team. With the right team, productivity, trust and reliability will naturally follow.

_1182331129.vsd
Development

Model Office

Production

ITE

_1182333035.vsd
Development

Model Office

ITE

Production

[Unit tests passed]

[integration tests pass]

[User tests and accepts]

[Change Request]

